2014.10-2021.03 德国魏玛包豪斯大学,计算力学,博士,导师:Timon Rabczuk教授
2011.09-2014.06 同济大学,隧道及地下建筑工程,硕士,导师:蔡永昌教授
2007.09-2011.06 重庆大学,土木工程,本科
以一作或通讯发表论文20余篇,具体见Scopus、谷歌学术:
[1] Ren, H., Zhuang, X., Cai, Y., & Rabczuk, T. (2016). Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 108(12), 1451-1476.
[2] Ren, H., Zhuang, X., & Rabczuk, T. (2017). Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 318, 762-782.
[3] Rabczuk, T., & Ren, H. (2017). A peridynamics formulation for quasi-static fracture and contact in rock. Engineering geology, 225, 42-48.
[4] Ren, H., Zhuang, X., & Rabczuk, T. (2016). A new peridynamic formulation with shear deformation for elastic solid. Journal of Micromechanics and Molecular Physics, 1(02), 1650009.
[5] Ren, H., Zhuang, X., & Rabczuk, T. (2017). Implementation of GTN model in dual-horizon peridynamics. Procedia engineering, 197, 224-232.
[6] Dai, Z., Ren, H., Zhuang, X., & Rabczuk, T. (2017). Dual-support smoothed particle hydrodynamics for elastic mechanics. International Journal of Computational Methods, 14(04), 1750039.
[7] Rabczuk, T., Ren, H., & Zhuang, X. (2019). A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem. Computers, Materials & Continua 59 (2019), Nr. 1.
[8] Ren, H. L., Zhuang, X. Y., Anitescu, C., & Rabczuk, T. (2019). An explicit phase field method for brittle dynamic fracture. Computers & Structures, 217, 45-56.
[9] Ren, H., Zhuang, X., Rabczuk, T., & Zhu, H. (2019). Dual-support smoothed particle hydrodynamics in solid: variational principle and implicit formulation. Engineering Analysis with Boundary Elements, 108, 15-29.
[10] Ren, H., Zhuang, X., & Rabczuk, T. (2020). A nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 358, 112621.
[11] Ren, H., Zhuang, X., & Rabczuk, T. (2020). A higher order nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 367, 113132.
[12] Ren, H., Zhuang, X., & Rabczuk, T. (2020). Nonlocal operator method with numerical integration for gradient solid. Computers & Structures, 233, 106235.
[13] Ren, H., Zhuang, X., Trung, N. T., & Rabczuk, T. (2021). Nonlocal operator method for the Cahn-Hilliard phase field model. Communications in Nonlinear Science and Numerical Simulation, 96, 105687.
[14] Ren, H., Zhuang, X. Y., Anitescu, C., & Rabczuk, T. (2021). Multi-connected boundary conditions in solid mechanics and surgery theory. Computers & Structures, 251, 106504.
[15] Ren, H., (2021). Dual-horizon peridynamics and Nonlocal operator method. (Doctoral dissertation, Bauhaus-Universität Weimar). https://doi.org/10.25643/BAUHAUS-UNIVERSITAET.4403
[16] Ren, H., Zhuang, X., Trung, N. T., & Rabczuk, T. (2021). A nonlocal operator method for finite deformation higher-order gradient elasticity. Computer Methods in Applied Mechanics and Engineering, 384, 113963.
[17] Zhuang, X., Ren, H., & Rabczuk, T. (2021). Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model. European Journal of Mechanics-A/Solids, 90, 104380.
[18] Ren, H., Zhuang, X., Oterkus, E., Zhu, H., & Rabczuk, T. (2021). Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method. Engineering with Computers, 1-22.
[19] Zhang, Y., Ren, H., Areias, P., Zhuang, X., & Rabczuk, T. (2021). Quasi-static and dynamic fracture modeling by the nonlocal operator method. Engineering Analysis with Boundary Elements, 133, 120-137.
[20] Zhang, Y., & Ren, H. (2022). Implicit implementation of the nonlocal operator method: an open source code. Engineering with Computers, 1-35.
[21] Zhang, Y., Ren, H., & Rabczuk, T. (2022). Nonlocal Operator Method for Solving Partial Differential Equations: State-of-the-Art Review and Future Perspectives. J. Adv. Eng. Comput., 6(1).
[22] Li, Z., Huang, D., Ren, H., & Rabczuk, T. (2022). Weak form of bond-associated peridynamic differential operator for solving differential equations. Engineering with Computers, 1-17.
[23] Ren, H., Zhuang, X., Fu, X., Li, Z., & Rabczuk, T. (2024). Bond-based nonlocal models by nonlocal operator method in symmetric support domain. Computer Methods in Applied Mechanics and Engineering, 418, 116230.
[24] Li, Z., Huang, D., Ren, H., & Rabczuk, T. (2022). Weak form of bond-associated peridynamic differential operator for solving differential equations. Engineering with Computers, 1-17.
[25] Bie, Y., Ren, H., Yan, H., & Chen, J. (2023). The unified nonlocal peridynamics-based phase-field damage theory. Theoretical and Applied Fracture Mechanics, 103980.
[26] Rabczuk, T., Ren, H., & Zhuang, X. (2023). Computational Methods Based on Peridynamics and Nonlocal Operators: Theory and Applications . Cham: Springer International Publishing.
2024.04-至今 同济大学,土木工程学院地下建筑与工程系,副教授
2021.09-2024.03 德国汉诺威莱布尼茨大学,数学物理学院,博士后
2021.03-2021.09 包豪斯大学,结构力学所,博士后
[1] 出版专著《Computational Methods Based on Peridynamics and Nonlocal Operators: Theory and Applications》,Springer 2023
[2] 2023年KJ Bathe奖(计算力学领域青年学者最佳期刊论文奖)
每年招收博士1名;硕士2-3名。
l 岩土体力学与本构关系
l 变分法、有限元法、无网格法等
l 固体力学、断裂力学、非局部理论等
上海市四平路1239号 021-65981011
版权所有:同济大学土木工程学院地下建筑与工程系 技术支持:苏迪科技