2007-2012 Georgia Institute of Technology 博士学位
2004-2007 同济大学土木工程学院地下建筑与工程系硕士学位
2000-2004 同济大学土木工程学院本科
近年主持科研项目:
[1] 腾讯首届碳寻计划项目,东部近海玄武岩二氧化碳矿化封存,主持,2024年
[2] 国家重点研发计划政府间国际科技创新合作项目,页岩储层安全碳封存基础理论与关键技术,主持,2023年
[3] 国家自然科学基金重点国合项目,深层高温高压页岩水力压裂特性与诱发地震机理研究,主持,2023年
[4] 同济大学学科交叉联合攻关项目,月球岩土材料的摩擦特性及其孕灾机理研究,主持,2022年
[5] 国家重点研发计划子课题,原位尺度气液驱动缝网扩展多场耦合模型和可压裂性评价技术,主持,2021年
[6] 上海高峰高原学科,基于人工智能和多尺度信息融合的非常规储层“甜点”预测及水力压裂优化,主持,2021年
[7] 国家自然科学基金面上项目,流体注入引起的深部页岩断层激活与滑移变形机理研究,主持,2020年
近年主持企业委托项目:
[1] 中国石油天然气股份有限公司长庆油田分公司油气工艺研究院,企业委托项目,吴起长8等扩边区水平井改造工艺综合评价及关键参数优化项目,主持,2024年
[2] 中煤科工开采研究院有限公司,企业委托项目,曹家滩煤矿顶板砂岩水力压裂实验与区域压裂卸压仿真服务,主持,2023年
[3] 中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,深层页岩气区页岩储层摩擦特性及解释方法研究技术开发,主持,2023年
[4] 中国石油天然气股份有限公司西南油气田分公司要页岩气研究院,企业委托项目,页岩气立体开发压裂优化研究,主持,2022年
[5] 中国石油集团工程技术研究院有限公司,企业委托项目,固液耦合数值模拟算法测试,主持,2022年
[6] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,基于有限元算法裂缝扩展模块开发,主持,2022年
[7] 中海油能源发展股份有限公司工程技术分公司,企业委托项目,工技公司目标油藏化学、物理扩容增效技术性能测试服务,主持,2022年
[8] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,高温高压条件下的岩石力学性能与断裂演化机理,主持,2022年
[9] 中国石油天然气股份有限公司勘探开发研究院,企业委托项目,油气水三相渗流-热场-力学耦合三维有限元地应力演化模型开发,主持,2022年
[10] 中国石油天然气股份有限公司勘探开发研究院,非常规储层岩石力学性能演化机理及剪切裂缝导流能力研究,主持,2022年
[11] 中国石油天然气股份有限公司勘探开发研究院,高温高压条件下的岩石力学性能与断裂演化机理研究,主持,2022年
[12] 中国石油天然气股份有限公司西南油气田分公司,企业委托项目,川南深层页岩储层天然裂缝剪切渗流及其稳定性分析,主持,2021年
[13] 中国地质科学院地质力学研究所,企业委托项目,青海共和盆地干热岩诱发地震剪切渗流测试,主持,2021年
[14] 上海市地矿工程勘察院,企业委托项目,上海典型土层温度-应力本构关系及温度-渗流-应力耦合数值模拟,主持,2021年
[15] 中国石油天然气股份有限公司长庆油田分公司,企业委托项目,扇形井网水平井体积压裂优化设计研究,主持,2021年
[16] 中国石油天然气股份有限公司西南油气田分公司,企业委托项目,页岩气井四维地应力演化机理及分布特征研究,主持,2021年
[17] 中海油能源发展股份有限公司工程技术分公司,企业委托项目,西江油田井扩容方案设计和实时监测分析,主持,2021年
2019年度同济大学基准方中奖教金
腾讯首届“碳寻计划”Top30奖(2023)
美国岩石力学学会Rock Mechanics Research Award(2023)
中国青年科技奖(2022)
教育部长江学者特聘教授(2021)
同济大学土木工程学院院长奖(2021)
[1]第二届IJRMMS主编与作者论坛暨岩石力学-工程地质学术交叉前言讲座, 2020-12-12.
[2]“深部地下空间开发的两大岩石力学问题探讨:水力压裂和断层稳定性”, 岩土力学与工程青年科学家论坛(第一届), 2020-11-23.
[3]“Modeling hydraulic fracturing complexity in naturally fractured rock masses: challenge and opportunity”, CouFrac2020, 2020-11-13.
[4]“Hydraulic fracturing optimization for low permeability shale oil reservoirs in the Ordos Basin”, 2nd International Symposium on In-situ Modification of Deposit Properties for Improving Mining (IMDPIM2) & 7th International Symposium on Unconventional Geomechanics (UG7), 2020-11-08.
[5]“Induced seismicity and casing deformation caused by hydraulic fracturing: A case study in Sichuan Basin, southwest China”, The Chinese University of Hong Kong, 2020-10-23.
[6]“Re-fracturing in low permeability reservoirs by integrating hydro-mechanical coupling and three-dimensional hydraulic fracturing”, International Field Exploration and Development Conference (IFEDC), 2020-09.
[7]“深地工程岩石力学多场耦合问题的研究进展”, 中国岩石力学与工程学会“青岩”学术沙龙, 2020-07-11.
[8]“岩石力学多场耦合及在深地能源工程中的应用”, CHINA ROCK 2019——第十六次中国岩石力学与工程学术年会, 2019-11-20.
[9]“Fault reactivation and induced seismicity for shale gas and geothermal: Mechanism and prevention”, 19th Workshop on Frontier of Science Development and 4th IULEE Council, 2019-11-12.
[10]“岩石力学多场耦合在深地能源工程中的应用”, 第十届全国青年岩土力学与工程会议, 2019-11.
[11]“‘东湖论坛’暨首届‘岩之梦’研究生学术沙龙”, 2019-10-29.
[12]“深部能源工程地质中的多场耦合问题研究进展”, 2019年全国工程地质学术年会, 2019-10-13.
[13]“Fault Activation and Induced Seismicity Caused by Hydraulic Fracturing: Observations and Mechanisms”, 6th International Conference on Unconventional Geomechanics, 2019-10-11.
[14]“Induced Seismicity and Casing Deformation Caused by Hydraulic Fracturing”, “An Overview in Sichuan Basin, Southwest China”, 53rd US Rock Mechanics / Geomechanics Symposium, 2019-06-23.
[15]“流体注入下深部页岩断层的激活机理和滑移变形控制”, 第十五届全国青年岩石力学与工程学术会议, 2019-05.
[16]“Investigating the hydraulic fracturing complexity in naturally fractured rock mass using fully coupled multiscale numerical modeling”, University of Texas Spring Seminar Series, 2019-04-19.
[17]“深地工程中断层的稳定性机理和滑移变形控制”, 第三届特殊土力学与工程实践青年学者论坛, 2019-01.
[18]“高温高压条件下深部断层的摩擦稳定性研究”, CHINA ROCK 2018——第十五次中国岩石力学与工程学术年会, 2018-11-22.
[19]“非常规油气开发中的水力压裂裂缝扩展数值分析——几个应用实例” , CHINA ROCK 2018——第十五次中国岩石力学与工程学术年会, 2018-11-22.
[20]“流体注入致密干砂中的失效机理及流动方式——模型实验及数值分析”, 第十次青年工程地质论坛, 2018-09.
[21]“深部复杂裂隙岩体的水力压裂多尺度数值模拟”, 第九次青年工程地质论坛, 2018-07.
[22]“Geomechanical modeling for injection induced seismicity”, 52nd US Rock Mechanics / Geomechanics Symposium, 2018-06-17.
[23]“颗粒离散元法的岩石力学与工程应用”, 第二届岩石力学与工程青年论坛, 2018-05.
[24]“Fracal patterns of fluid injection into dense granular medium”, The 4th International Symposium on Multi-scale Geomechanics and Geo-engineering, 2018-01-14.
[25]“深地水力压裂导致的断层激活和诱发地震活动初探”, 中国科协第335次青年科学家论坛, 2017-11.
[26]“缝洞型碳酸盐岩储层在长期抽/注液体作用下的流-固耦合力学分析”, 中国力学大会2017暨庆祝中国力学学会成立60周年大会, 2017-08-16.
[27]“水力压裂导致的断层激活和地震活动——机理分析和数值模拟”, 2017年第七次青年工程地质学术研讨会, 2017-08.
[28]“Hydraulic fracturing in fractured rocks: perspectives from multi-scale numerical modeling”, The 3rd International Symposium on Multi-scale Geomechanics and Geo-engineering, 2016-11-12.
[1] Jiang, X., Zhang, F., Huang, B*., Titi, H., Polaczyk, P., Ma, Y., Wang, Y., Cheng, Z. (2024). “Full-scale accelerated testing of geogrid-reinforced inverted pavements”, Geotextiles and Geomembranes, 1-15. https://doi.org/10.1016/j.geotexmem.2024.01.005
[2] Zhou, Z., Zhang, F*., Fu, H., Xiu, N., Guan, B., Cai, B. (2024). “A thermal–mechanical coupled DEM model for deep shale reservoir: the effects of temperature and anisotropy”, Rock Mechanics and Rock Engineering, 1-20. https://doi.org/10.1007/s00603-023-03756-8
[3] Zhong, Z., Xu, C., Hu, Y., Zhang, F., Wu, F., Li, B*. (2024). “Frictional strength and sliding behaviors of an analogue rock-fault structure: A laboratory study”, International Journal of Rock Mechanics and Mining Sciences, 174, 105665. https://doi.org/10.1016/j.ijrmms.2024.105665
[4] Liu, C., Detournay, E*., Zhang, F. (2024). “Finite domain solution of a KGD hydraulic fracture in the viscosity-dominated regime”, Rock Mechanics Bulletin, 3 (1), 100095. https://doi.org/10.1016/j.rockmb.2023.100095
[5] Hou, L., Elsworth, D., Wang, J., Zhou, J., Zhang, F*. (2024). “Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs”, Renewable and Sustainable Energy Reviews, 189, 113878. https://doi.org/10.1016/j.rser.2023.113878
[6] Li, M., Zhang, F*., Wang, S., Dontsov, E., Li, P. (2024). “DEM Modeling of Simultaneous Propagation of Multiple Hydraulic Fractures Across Different Regimes, from Toughness- to Viscosity-Dominated”, Rock Mechanics and Rock Engineering, 57(1), 481-503. https://doi.org/10.1007/s00603-023-03554-2
[7] Wang, Y., Zhang, F*., Liu, F., Wang, X. (2024). “Full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, Acta Geotech, 19(1), 401-415. https://doi.org/10.1007/s11440-023-01904-6
[8] Zhong, Z., Meng, X., Hu, Y., Zhang, F., Wu, F., Wang, G*. (2023). “Quantitative assessments on fluid flow through fractures embedded in permeable host rocks: Experiments and simulations”, Engineering Geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341
[9] Zhong, Z., Meng, X., Hu, Y., Zhang, F., Wu, F., Wang, G*. (2023). “Quantitative assessments on fluid flow through fractures embedded in permeable host rocks: Experiments and simulations”, Engineering Geology, 327, 107341. https://doi.org/10.1016/j.enggeo.2023.107341
[10]Zhong, Z., Xu, C., Zhang, F., Wang, X., Hu, Y*. (2023). “Size effect on hydraulic properties of rough-walled fractures upscaled from meter-scale granite fractures”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 75. https://doi.org/10.1007/s40948-023-00606-3
[11]Feng, R., Luo, H., Chen, Z., Zhang, F*. (2023). “Integrated microseismic and geomechanical analysis of hydraulic fracturing induced fault reactivation: a case study in Sichuan Basin, Southwest China”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 48. https://doi.org/10.1007/s40948-023-00586-4
[12]Cui, L., Zhang, F., An, M*., Zhuang, L., Elsworth, D., Zhong, Z. (2023). “Frictional stability and permeability evolution of fractures subjected to repeated cycles of heating-and-quenching: granites from the Gonghe Basin, northwest China”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1), 18. https://doi.org/10.1007/s40948-023-00565-9
[13]Wang, T., Wang, C., Zhang, F*. (2023). “Experimental study of fines migration in gap-graded soils with gas production: Implications to hydrate production from unconsolidated reservoirs”, Geoenergy Science and Engineering, 211856. https://doi.org/10.1016/j.geoen.2023.211856
[14]Zhang, F., Cao, S., An, M*., Zhang, C., Elsworth, D. (2023). “Friction and stability of granite faults in the Gonghe geothermal reservoir and implications for injection-induced seismicity”, Geothermics, 112, 102730. https://doi.org/10.1016/j.geothermics.2023.102730
[15]Wang, Y., Zhang, F*., Liu, F., Wang, X. (2023). “Full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels”, Acta Geotech. https://doi.org/10.1007/s11440-023-01904-6
[16]Li, J*., Xu, J., Zhang, H*., Yang, W., Tan, Y., Zhang, F., Meng, L., Zang, Y., Miao, S., Guo, C., Li, Z., Lu, R., Sun, J. (2023). “High seismic velocity structures control moderate to strong induced earthquake behaviors by shale gas development”, Communications Earth & Environment, 4, 188. https://doi.org/10.1038/s43247-023-00854-x
[17]Liu, Y., Zhang, J., Bai, J., Zhang, F.*, Tang, J. (2023), “Numerical study of hydraulic fracturing in the sectorial well-factory considering well interference and stress shadowing”, Petroleum Science. https://doi.org/10.1016/j.petsci.2023.05.020.
[18]Zhao, L., Cai, Z., Qin, X*., Wang, Y., Teng, L., Han, D., Zhang, F., Geng, J.(2023). “An empirical elastic anisotropy prediction model in self-sourced reservoir shales and its influencing factor analysis”, Geophysics, 88(3), MR117–MR126. https://doi.org/10.1190/geo2022-0543.1
[20]Wang, T., Zhang, F*., Wang, P. (2023). “Experimental and numerical study of seepage-induced suffusion under K0 stress state”, Journal of Zhejiang University-SCIENCE A, 24 (4), 319-331. https://doi.org/10.1631/jzus.A2200198
[21]Liu, P., Sun, M., Chen, Z., Zhang, S., Zhang, F., Chen, Y., Chen, W., Bate, B*. (2023). “Influencing factors on fines deposition in porous media by CFD–DEM simulation”, Acta Geotechnica. https://doi.org/10.1007/s11440-023-01870-z
[22]Zhong, Z., Xu, C., Wang, L., Hu, Y., Zhang, F*. (2023). “Experimental investigation on frictional properties of stressed basalt fractures”, Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2022.12.020
[23]Hou, L., Elsworth, D*., Zhang, F., Wang, Z., Zhang, J. (2023). “Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models”, Energy, 264, 126122. https://doi.org/10.1016/j.energy.2022.126122
[24]Wang, X., Zhang, F*., Tang, M., Du, X., Hou, B., Tang, J. (2023). “Numerical investigation of hydraulic fracture deflection in large-angle oblique horizontal wells with staged multi-cluster fracturing”, Geoenergy Science and Engineering, 222, 211436. https://doi.org/10.1016/j.geoen.2023.211436
[25]Wang, T., Zhang, F*., Zheng, W. (2023). “Suffusion of Gap-Graded Soil with Realistically Shaped Coarse Grains: A DEM–DFM Numerical Study”, International Journal of Geomechanics, 23(1), 04022247.https://doi.org/10.1061/(ASCE)GM.1943-5622.0002616
[27]Qin, X., Zhao, L*., Cai, Z., Wang, Y., Xu, M., Zhang, F., Han, D., Geng, J. (2022). “Compressional and shear wave velocities relationship in anisotropic organic shales”, Journal of Petroleum Science and Engineering, 219, 111070. https://doi.org/10.1016/j.petrol.2022.111070
[28]Wang, T., Wang, P*., Yin, Z., Zhang, F. (2022). “DEM-DFM modeling of suffusion in calcareous sands considering the effect of double-porosity”, Computer and Geotechnics, 151, 104965. https://doi.org/10.1016/j.compgeo.2022.104965
[29]Wang, X., Zhang, F*., Yin, Z., Weng, D., Liang, H., Zhou, J., Xu, B. (2022). “Numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs”, Petroleum Science, 19(5), 2210-2226. https://doi.org/10.1016/j.petsci.2022.05.006
[30]Li, M., Wu, J., Li, J., Zhuang, L., Wang, S., Zhang, F*. (2022). “Modeling of hydraulic fracturing in polymineralic rock with a grain-based DEM coupled with a pore network model”, Engineering Fracture Mechanics, 275, 108801.https://doi.org/10.1016/j.engfracmech.2022.108801
[31]Zhu, H., Tang, X*., Zhang, F., McLennan, J. D. (2022). “Mechanical behavior of methane–hydrate–bearing sand with nonlinear constitutive model”, Arabian Journal for Science Engineering, 47, 12141–12167. https://doi.org/10.1007/s13369-022-06914-2
[32]Wang, B., Li, D., Xu, B., Zhang, Y., Zhang, F*., Wang, Q., Yang, B. (2022). “Probabilistic-based geomechanical assessment of maximum operating pressure for an underground gas storage reservoir, NW China”, Geomechanics for Energy and the Environment, 100279. https://doi.org/10.1016/j.gete.2021.100279 2352-3808
[33]Zhang, F., Cui, L., An, M*., Elsworth, D., He, C. (2022). “Frictional stability of Longmaxi shale gouges and its implication for deep seismic potential in the southeastern Sichuan Basin”, Deep Underground Science and Engineering, 1, 3–14. https://doi.org/10.1002/dug2.12013
[34]Zhang, F., R. Huang, M. An*, K.B. Min, D. Elsworth, H. Hofmann, X. Wang. (2022). “Competing Controls of Effective Stress Variation and Chloritization on Friction and Stability of Faults in Granite: Implications for Seismicity Triggered by Fluid Injection.” Journal of Geophysical Research: Solid Earth, e2022JB024310. https://doi.org/10.1029/2022JB024310
[35]Jiang, C., Wang, X*., Zhang, F., Deng, K., Lei, Q. (2022). “Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs”, Rock Mechanics and Rock Engineering, 55 (8), 5235-5258. https://doi.org/10.1007/s00603-022-02882-z
[36]Hou, B*., Cui, Z., Ding, J., Zhang, F., Zhuang, L., Elsworth, D. (2022), “Perforation optimization of layer-penetration fracturing for commingling gas production in coal measure strata”, Petroleum Science, 19,1718-1734 https://doi.org/10.1016/j.petsci.2022.03.014
[37]Zhang, F., Wang, T., Liu, F.*, Peng, M., Bate, B. and Wang, P. (2022). “Hydro-mechanical coupled analysis of near-wellbore fines migration and sanding from unconsolidated reservoirs”, Acta Geotechnica, 1-17. https://doi.org/10.1007/s11440-021-01396-2
[38]Zhang, F*., Huang, L., Yang, L., Dontsov, E., Weng, D., Liang, H., Yin, Z. and Tang, J. (2022). “Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation”, Petroleum Science, 19, 296-308. https://doi.org/10.1016/j.petsci.2021.09.014
[39]Espinoza, W. F., Zhang, F., Dai, S*. (2022). “Impacts of temperature on the mechanical properties of Longmaxi shale outcrops using instrumented nanoindentation”, Geomechanics for Energy and the Environment, 30, 100348. https://doi.org/10.1016/j.gete.2022.100348
[40]Yang, K., Zhou, J*., Xian, X., Zhou, L., Zhang, C., Tian, S., Lu, Z., Zhang, F. (2022). Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure, Energy, 248, 123591. https://doi.org/10.1016/j.energy.2022.123591
[41]Zhang, F., Wang, C.and Wang, T*. (2022). “Model test on backward erosion piping under a K0 stress state”, International Journal of Geomechanics, 22(4), 04022015. https://doi.org/10.1061/ (ASCE)GM.1943-5622.0002326
[42]An, M., Zhang, F*., Min, K. B., Elsworth, D., He, C., Zhao, L. (2022). “Frictional stability of metamorphic epidote in granitoid faults under hydrothermal conditions and implications for injection-induced seismicity”, Journal of Geophysical Research: Solid Earth, e2021JB023136. https://doi. org/10.1029/2021JB023136
[43]Wang, X., Zhang, F*., Tang, M., Du, X., and Tang, J. (2022). “Effect of stress shadow caused by multistage fracturing from multiple well pads on fracture initiation and near-wellbore propagation from infill wells”, SPE Journal, 27(01), 204-225. https://doi.org/10.2118/208577-PA
[44]Wang, T., Zhang, F*., Furtney, J., Damjanac, B. (2022). “A review of methods, applications and limitations for incorporating fluid flow in the discrete element method”, Journal of Rock Mechanics and Geotechnical Engineering. 14(3), 1005–1024. https://doi.org/10.1016/j.jrmge.2021.10.015
[45]Huang, L., Dontsov, E., Fu, H., Lei, Y., Weng, D., and Zhang, F*. (2022). “Hydraulic fracture height growth in layered rocks: perspective from DEM simulation of different propagation regimes”, International Journal of Solids and Structures, 238, 111395. https://doi.org/10.1016/j.ijsolstr.2021.111395
[46]Bate, B., Chen, X., Chen, J. Sun, M., Li, J., Zhang, S., Zhang, F., Zhan, L., Cao, J*. (2022) “Internal erosion monitoring with a rowe cell type compression–breakthrough–bender element column”, Acta Geotech. 17(6), 2365–2377. https://doi.org/10.1007/s11440-021-01413-4
[47]Chen, Y., Zhao, L*., Pan, J., Li, C., Xu, M., Li, K., Zhang, F., and Geng, J. (2021). “Deep carbonate reservoir characterization using multi-seismic attributes via machine learning with physical constraints”, Journal of Geophysics and Engineering, 18(5), 761-775. https://doi.org/10.1093/jge/gxab049
[48]Wang, X., Sun, X., Luo, C., Zhang, F.*, and Xu, B. (2021). “Large-scale triaxial experimental investigation of geomechanical dilation start-up for SAGD dual horizontal wells in shallow heavy oil reservoirs”, Journal of Petroleum Science and Engineering, 203, 108687. https://doi.org/10.1016/j.petrol.2021.108687
[49]Jin, S., Wang, X., Wang, Z., Mo, S., Zhang, F., and Tang, J*. (2021). “Evaluation approach of rock brittleness index for fracturing acidizing based on energy evolution theory and damage constitutive relation”. Lithosphere, 2021(Special 4), 2864940. https://doi.org/10.2113/2021/2864940
[50]Zhou, Z., Yang, D*., Chen, W., Zhang, X., Wu, B. and Zhang, F. (2021). “Numerical study of initiation pressure in hydraulic fracturing by Dual Criterion for non-circular wellbore”, Engineering Fracture Mechanics, 107804. https://doi.org/10.1016/j.engfracmech.2021.107804
[51]An, M., Zhang, F*., Min, K. B., Elsworth, D., Marone, C., and He, C. (2021). “The potential for low-grade metamorphism to facilitate fault instability in a geothermal reservoir”, Geophysical Research Letters, e2021GL093552. https://doi.org/10.1029/2021GL093552
[52]Zhang, F., Wang, X., Tang, M., Du, X., Xu, C., Tang, J*., and Damjanac, B. (2021). “Numerical investigation on hydraulic fracturing of extreme limited entry perforating in Plug-and-Perforation Completion of shale oil reservoir in Changqing Oilfield, China”, Rock Mechanics and Rock Engineering, 54(6). https://doi.org/10.1007/s00603-021-02450-x
[53]Bate, B., Nie, S., Chen, Z*., Zhang, F., and Chen, Y. (2021) “Construction of soil-water characteristic curve of granular materials with toroidal model and artificially generated packings”, Acta Geotechnica, 16(6), 1949-1960. https://doi.org/10.1007/s11440-021-01140-w
[54]An, M., Zhang, F*., Dontsov, E., Elsworth, D., Zhu, H., and Zhao, L. (2021). “Stress perturbation caused by multistage hydraulic fracturing: Implications for deep fault reactivation”, International Journal of Rock Mechanics and Mining Sciences, 141(5), 104704. https://doi.org/10.1016/j.ijrmms.2021.104704
[55]Lin, Q., Cheng, Q*., Xie, Y., Zhang, F., Li, K., Wang, Y., Zhou, Y. (2021). “Simulation of the fragmentation and propagation of jointed rock masses in rockslides: DEM modeling and physical experimental verification”, Landslides ,18:993–1009.
[56]Tang, J*., Fan, B*., Xiao, L**., Tian, S., Zhang, F., Zhang, L., and Weitz, D. (2021). “A new ensemble machine-learning framework for searching sweet spots in shale reservoirs”, SPE Journal, 26(1), 482-497. https://doi.org/10.2118/204224-PA
[57]Chen, J., Zhou, M., Zhang*, D., Huang, H., and Zhang, F. (2021). “Quantification of water inflow in rock tunnel faces via convolutional neural network approach”, Automation in Construction, 123(5), 103526. https://doi.org/10.1016/j.autcon.2020.103526
[58]Huang, R., Chen, Z., Zhang, F*., Zhou, X., Wang, Q., Cao, H., Zhang, H., and Yang, X. (2020). “Fault slip risk assessment and treating parameters optimization for casing deformation prevention: A case study in the Sichuan basin”, Geofluids, 2020(58), 1-17. https://doi.org/10.1155/2020/8894514
[59]Zhang, F., Jiang, Z., Chen, Z., Yin, Z., and Tang, J*. (2020). “Hydraulic fracturing induced fault slip and casing shear in Sichuan basin: A multi-scale numerical investigation”, Journal of Petroleum Science and Engineering, 195. https://doi.org/10.1016/j.petrol.2020.107797
[60]Li, M., Zhang, F*., Zhuang, L., Zhang, X., and Ranjith, P. (2020). “Micromechanical analysis of hydraulic fracturing in the toughness-dominated regime: Implications to supercritical carbon dioxide fracturing”, Computational Geosciences, 24(5), 1815-1831. https://doi.org/10.1007/s10596-019-09925-5
[61]Yang, J., Yang, D., Zhang, X*., Jeffrey, R., Chen, W., Sheng, Q., and Zhang, F*. (2020). “Energy budget and fast rupture on a near-excavation fault: implications for mitigating induced seismicity”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019360. https://doi.org/10.1029/2020JB019360
[62]An, M., Zhang, F*., Chen, Z., Elsworth, D., and Zhang, L. (2020). “Temperature and fluid pressurization effects on frictional stability of shale faults reactivated by hydraulic fracturing in the Changning Block, Southwest China”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019584. https://doi.org/10.1029/2020JB019584
[63]An, M., Zhang, F*., Elsworth, D., Xu, Z., Chen, Z., and Zhang, L. (2020). “Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing”, Journal of Geophysical Research: Solid Earth, 125, e2020JB019885. https://doi.org/10.1029/2020JB019885
[64]Zhang, F., Wang, T., Liu, F., Peng, M*., Furtney, J., and Zhang, L. (2020). “Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils”, Computer and Geotechnics, 124, 103617. https://doi.org/10.1016/j.compgeo.2020.103617
[65]Wang, C*., Elsworth, D., Fang, Y., and Zhang, F. (2020). “Influence of fracture roughness on the shear strength, slip stability and permeability: A mechanistic analysis by three-dimensional digital rock modeling”, Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.010
[66]Yin, Z., Huang, H., Zhang, F*., Zhang, L., and Maxwell, S. (2020). “Three-dimensional distinct element modeling of fault reactivation and induced seismicity due to hydraulic fracturing injection and backflow”, Journal of Rock Mechanics and Geotechnical Engineering, 12(4), 720-731. https://doi.org/10.1016/j.jrmge.2019.12.009
[67]Huang, L., Liu, J., Zhang, F*., Fu, H., Zhu, H., and Damjanac, B. (2020). “3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models”, Journal of Petroleum Science and Engineering, 191, 107169. https://doi.org/10.1016/j.petrol.2020.107169
[68]Zhang, Z., Chen, F., Zhang, C., Wang, C., Wang, T., Zhang, F*., and Zhao, H. (2020). “Numerical simulation of rock failure process with a 3D grain-based rock model”, Advances in Civil Engineering, 2020(4), 1-11. https://doi.org/10.1155/2020/8810022
[69]Yin, Z., Wang, P*., Zhang, F. (2020). “Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method”. Tunnelling and Underground Space Technology, 100, 103394. https://doi.org/10.1016/j.tust.2020.103394
[70]Wang, T., Huang, H., Zhang, F*., and Han, Y. (2020). “DEM-continuum mechanics coupled modeling of slot-shaped breakout in high-porosity sandstone”, Tunnelling and Underground Space Technology, 98, 103348. https://doi.org/10.1016/j.tust.2020.103348
[71]Zhang, F*., Yin, Z., Chen, Z., Maxwell, S., Zhang, L., and Wu, Y. (2020). “Fault reactivation and induced seismicity during multistage hydraulic fracturing: Microseismic analysis and geomechanical modeling”, SPE Journal, 25(02), 0692-0711. https://doi.org/10.2118/199883-PA
[72]Zhang, F., An, M., Zhang, L*., Fang, Y., and Elsworth, D. (2020). “Effect of mineralogy on friction-dilation relationships for simulated faults: Implications for permeability evolution in caprock faults”, Geoscience Frontiers, 11(2), 439-450. https://doi.org/10.1016/j.gsf.2019.05.014
[73]An, M., Huang, H., Zhang, F*., and Elsworth, D. (2020). “Effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 28. https://doi.org/10.1007/s40948-020-00153-1
[74]汤继周,王小华,杜现飞,马兵,张丰收*.扇形井网体积压裂地质工程一体化参数优化方法[J].石油勘探与开发,2023,50(4):845-852.
[75]王小华,罗浩然,张丰收*.水平井射孔压裂完井下控制近井筒裂缝复杂度的参数优化[J].岩石力学与工程学报,2022,505-505.
[76]张丰收,李猛利,张重远*,何满潮,张盛生,衡德.高地应力下深部岩芯饼化裂缝发展规律及机制研究[J/OL]. 岩石力学与工程学报,2022,41(3):533-542.
[77]付海峰,才博,庚勐,贾爱林,翁定为,梁天成,张丰收,问晓勇,修乃岭.基于储层纵向非均质性的水力压裂裂缝三维扩展模拟 [J]. 天然气工业 , 2022, 42(5): 56-68.
[78]李博,朱强,张丰收*,赵程,伍法权.基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究[J].岩石力学与工程学报,2021,40(06):1119-1131.
[79]孙君,王小华,徐斌,张丰收*.强非均质超稠油砂储层双水平井扩容启动数值模拟研究[J].科学技术与工程,2021,21(15):6262-6271.
[80]侯冰,武安安,常智,尤源,寇晓璇,张丰收.页岩油储层多甜点压裂裂缝垂向扩展试验研究[J].岩土工程学报,2021,43(07):1322-1330.
[81]张丰收,吴建发,黄浩勇,王小华*,罗浩然,岳文翰,侯冰.提高深层页岩裂缝扩展复杂程度的工艺参数优化[J].天然气工业,2021,41(01):125-135.
[82]付海峰,黄刘科,张丰收*,胥云,才博,梁天成,王欣.射孔模式对水力压裂裂缝起裂与扩展的影响机制研究[J].岩石力学与工程学报,2021,40(S2):3163-3173.
[83]张少强,侯圣均,江传彬,程宏,蒋振源,张丰收*.走滑断层错动作用下隧道变形的数值分析[J].现代隧道技术,2020,57(S1):418-424.
[84]蒋振源,陈朝伟,张平,张丰收.断块滑动引起的套管变形及影响因素分析[J].石油管材与仪器,2020,6(04):30-37.
[1] Li, X., Zhang, F., Du, M., Xiu, N., Weng, D., Cai, B., Fu, H., Huang, L. “Numerical Study on Permeability Evolution of a Natural Fracture in Granite During Shearing”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0196
[2] Cui, L., Zhang, F., An, M., Zhuang, L., Wang, H. “Effect of Heating-Cooling Cycles on the Friction-Permeability Evolution of Granite Fractures Under Shearing”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0458
[3] Hou, L., Zhang, F., Elsworth, D. “Post-Fracturing Evaluation of Fractures by Interpreting the Dynamic Matching Between Proppant Injection and Fracture Propagation”, 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA, June 2023. https://doi.org/10.56952/ARMA-2023-0342
[4] Du, M., Zhang, F., Liu, F., Zhuang, L. “Numerical study on the effect of localized fluid pressurization on shear and hydraulic behavior of a natural fracture in granite”, ARMA-2022-0376, 56th US Rock Mechanics / Geomechanics Symposium, Santa Fe, New Mexico, USA, June 2022. https://doi.org/10.56952/ARMA-2022-0376
[5] Luo, H., Shi, X., Gou, Q., Zhang, D., Zhang, F., Cui, L. “Friction-stability-permeability relationship of Longmaxi shale fractures from the Southern Sichuan Basin, southwest China”, ARMA-2022-0202, 56th US Rock Mechanics / Geomechanics Symposium, Santa Fe, New Mexico, USA, June 2022. https://doi.org/10.56952/ARMA-2022-0202
[6] Li, M., Zhang, F., Zhuang, L. “Micromechanical analysis of hydraulic fracturing in granite with a grain-based DEM coupled with pore network model” ARMA-IGS-21-089, ARMA/DGS/SEG International Geomechanics Symposium, Virtual, November 2021.
[7] Elsworth, D., Fang, Y., Im, K., Wang, C., Ishibashi, T., Jia, Y., Yildirim, E.C., Zhang, F. “Seismicity-permeability coupling in the breaching and sealing of reservoirs and caprocks”, 82nd EAGE Annual Conference & Exhibition, Oct 2021, Volume 2021, p.1-5. https://doi.org/10.3997/2214-4609.202010413
[8] Zhang, K., Tang, M., Du, X., Wang, X., Zhang, F., Tang, J. “Stress disturbance induced by multiple-well fracturing and its influence on initiation and near-wellbore propagation from infill horizontal perforated borehole”, IOP Conference Series: Earth and Environmental Science, Volume 861,072119. https://doi.org/10.1088/1755-1315/861/7/072119
[9] An, M., Zhang, F., Elsworth, D. “HPHT fault gouge friction experiments: implication for hydraulic fracturing induced seismicity in the Sichuan Basin”ARMA-2021-1572, 55th US Rock Mechanics/Geomechanics Symposium, Virtual, June 2021.
[10]Tang, J., Fan, B., Lu, W., Liang, L., Zhang, F., Cai, B. “Machine Learning Models for Predicting Well Production Based on Fracturing Construction Data”, SPE Annual Technical Conference and Exhibition, 2020.
[11]Wu, B., Yan, Q., Wang, L., Chen, Q., Wang, T., and Zhang, F. “DEM simulation of internal erosion around a submerged defective pipe”, IOP Conference Series: Earth and Environmental Science, Volume 570, China Rock 2020, Beijing, China, 23-26 October 2020. https://doi.org/10.1088/1755-1315/570/2/022050
[12]Wang, X., Zhang, F., Sun, J., and Xu, B. “Experimental investigation on the SAGD dilation start-up in shallow heavy oil reservoirs”, IOP Conference Series: Earth and Environmental Science, Volume 570, China Rock 2020, Beijing, China, 23-26 October 2020. https://doi.org/10.1088/1755-1315/570/3/032046
[13]Xie, J., Tang, J., Sun, S., Song, Y., Huang, H., Pei, H., Li, Y., and Zhang, F. “Numerical investigation of proppant transport and placement along opened bedding interfaces”, SPE Western Regional Meeting, 200801.
2022/1—现在 同济大学同济特聘教授、教育部长江学者特聘教授
2021/3—2023/2 国家自然基金委员会地球科学部流动项目主任
2020/7—2021/12 同济大学长聘教授
2016/9—2020/6 同济大学教授
2012/8-2016/8 美国Itasca咨询公司地质力学工程师
[1] 赵峦啸;竺炫莹;付晓伟;陈怀震;张丰收;耿建华. 联合监督和非监督学习的低勘探区地层和岩性地震评价方法[P]. 上海市:CN114137610 B,2023-05-02.
[2] Zhang, F., Feng, R., Yin, Z., Cao, S., Zhao, L. Method for pre-warning deformation of casing pipe according to change feature of b - value of hydraulic fracturing induced micro-seismicity[P]. US2022/0243584A1,2022-08-04.
[3] 赵峦啸,邹采枫,陈远远,王一戎,陈怀震,张丰收,耿建华. 基于XGBOOST算法与特征工程的岩性及流体类型识别方法[P]. 上海市:CN111753871B,2022-12-16.
[4] 赵峦啸,许明辉,陈远远,汤继周,张丰收,耿建华. 一种基于Cascade样本均衡的地震流体预测方法[P]. 上海市:CN112434878B,2022-09-20.
[5] 张丰收,冯睿,尹子睿,王小华,黄刘科,赵峦啸. 利用水力压裂微地震b值来优化页岩气井重复压裂方法[P]. 上海市:CN112883574B,2022-08-09.
[6] 张丰收,曹澍天,王小华,安孟可,赵峦啸. 一种基于位错理论计算水力压裂产生应力场的方法[P]. 上海市:CN112417784B,2022-07-05.
[7] 张丰收,冯睿,尹子睿,曹澍天,赵峦啸. 一种利用水力压裂微地震b值变化特征来预警套管变形的方法[P]. 上海市:CN112925015B,2022-03-01.
[8] 赵峦啸,邹采枫,陈远远,陈怀震,张丰收,耿建华. 一种机器学习框架下考虑空间约束的地震储层预测方法[P]. 上海市:CN111596354B,2021-06-04.
[9] 朱海燕,沈佳栋,高庆庆,张丰收. 一种支撑剂嵌入和裂缝导流能力定量预测的数值模拟方法[P]. 四川省:CN107423466B,2019-12-24.
[10]黄宏伟,谢雄耀,杜军,张丰收,田海洋. 基于探地雷达的盾构隧道沉降控制方法[P]. 上海市:CN100445516C,2008-12-24.
《PFC2D/3D颗粒离散元数值计算方法及科学应用》中国建筑工业出版社
《离散元水力压裂一体化数值仿真》科学出版社
《复杂裂缝导流能力预测理论》科学出版社
《Coupled thermo-hydro-mechanical processes in fractured rock masses》Springer
弹性力学(英)主讲人
高等岩石力学(英)主讲人
深地科学与绿色能源主讲人
2023~至今国际岩石力学与岩石工程学会副主席、中国国家小组副主席
2023~至今中国岩石力学与工程学会青年工作委员会主任
2022~至今中国岩石力学与工程学会低碳岩石力学与工程专委会副主任
2022~至今 Rock Mechanics Bulletin创刊执行主编
2021~至今 Journal of Rock Mechanics and Geotechnical Engineering 编委、科学编辑
2021~至今《岩石力学与工程学报》编委
2021~至今中国岩石力学与工程学会副秘书长
2021~至今《Petroleum Science》副主编
2021~至今《天然气工业》编委
2021~至今中国地质学会工程地质专委会委员
2020~至今中国岩石力学与工程学会理事
2020~至今中国地震学会构造物理专业委员会委员
2020~至今中国岩石力学与工程学会岩土体多场耦合专委会副主任
2020~至今中国岩石力学与工程学会岩石破碎工程专业委员会委员
每年招收博士生2-3名,硕士生3名,博后不限名额
博士后:
黄刘科,毕业学校:西南石油大学,入站时间:2020年
罗浩然,毕业学校:西南石油大学,入站时间:2020年
安孟可,毕业学校:同济大学,入站时间:2021年
王晶晶,毕业学校:西班牙加泰罗尼亚理工大学,入站时间:2022年
张秀凤,毕业学校:东北大学,入站时间:2022年
李孟熠,毕业学校:武汉大学,入站时间:2023年
王小华,毕业学校:同济大学,入站时间:2024年
博士:
安孟可,入学时间:2016年
王拓,入学时间:2017年
李猛利,入学时间:2018年
尹子睿,入学时间:2018年
王小华,入学时间:2019年
曾铭,入学时间:2019年
曹澍天,入学时间:2020年
崔力,入学时间:2020年
王翀,入学时间:2020年
王洋,入学时间:2020年
冯钊,入学时间:2021年
黄锐,入学时间:2021年
李雪峰,入学时间:2021年
刘昱昊,入学时间:2021年
李汉章,入学时间:2022年
杜泊潼,入学时间:2022年
周子扬,入学时间:2023年
吕建航,入学时间:2023年
硕士:
张梓璠,入学时间:2017年
蒋振源,入学时间:2018年
杨林,入学时间:2018年
杜沐,入学时间:2019年
冯睿,入学时间:2019年
张文露,入学时间:2019年
何冠鹏,入学时间:2020年
颜书祺,入学时间:2021年
赵文治,入学时间:2021年
郑凌霄,入学时间:2021年
陈世航,入学时间:2022年
任天悦,入学时间:2022年
韦俊杰,入学时间:2022年
孟可雨,入学时间:2023年
欧阳蔚荃,入学时间:2023年
夏井泉,入学时间:2023年
深地工程岩石力学;裂隙岩体水力压裂;二氧化碳地质封存与能源存储;极端环境岩土力学;隧道及地下工程
上海市四平路1239号 021-65981011
版权所有:同济大学土木工程学院地下建筑与工程系 技术支持:苏迪科技