师资力量
师资力量
当前位置:首页  师资力量

顾晓强

在国内外学术期刊和会议上发表论文130余篇,其中SCI/EI收录90余篇,代表性论文如下:

1.       Hu, J.,Wu, H.W., Gu, X.Q., Zhou, Q.H. Particle Shape Effects on Dynamic Properties of Granular Soils: A DEM Study. Computers and Geotechnics, 2023, 161: 105578

2.       Zuo, K.L., Gu, X.Q., Hu C., Hu, J., Gao, G.Y. Shear stiffness of sand-fines binary mixtures: Effects of sand gradation and fines content. Construction and Building Materials, 2023, 383: 131364

3.       Zuo, K.L., Gu, X.Q., Zhang J.C., Wang, R. Exploring packing density, critical state, and liquefaction resistance of sand-fines mixture using DEM. Computers and Geotechnics, 2023, 156, 105278

4.       Gu X.Q., Liang X.M., Hu J. Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: A numerical investigation. Geotechnique, https://doi.org/10.1680/jgeot.22.00314

5.       Lai, H.Y., Gu, X.Q., Tu, W.Bo., Lin, Y.F., Xiao, J.D. Effects of soil small strain nonlinearity on dynamic impedance of horizontally loaded suction caisson for offshore wind turbines. Soil Dynamics and Earthquake Engineering, 2023, 165, 107731

6.       Wu, H.W., Gu, X.Q., Hu, J., Zhou, Q.H. DEM simulation of small strain and large strain behaviors of granular soils with a coherent contact model. Granular Matter, 24:125. https://doi.org/10.1007/s10035-022-01286-8

7.       Pegah E., Liu H., Gu X., Gholami A. A semi-analytical approach for efficient calculation of drained cross-anisotropic elastic moduli in saturated granular soils from undrained attributes. Computers and Geotechnics, 2022, 148, 104794

8.       Qian J., Zhou C., Li W., Gu X.*, Qin Y., Xie L. 2022. Investigation on the Influencing Factors of K0 of Granular Materials Using DEM. Applied Science, 12, 2899

9.       Gu X.G., Li Y.H., Hu J., Shi Z., Liang F., Huang M. Elastic shear stiffness anisotropy and fabric anisotropy of natural clays. Acta Geotechnica, 2022, 17:3229–3243.  https://doi.org/10.1007/s11440-022-01468-x

10.   Shan Y, Cheng G.H., Gu X.G., Zhou S.H., Xiao F.Z. Optimization of design parameters of displacement isolation piles constructed between a high-speed railway bridge and a double-line metro tunnel: From the view point of vibration isolation effect. Computers and Geotechnics, 2021, 140, 104460

11.   Gu X.G., Wu D.S., Zuo K.L., Tessari A. Centrifuge shake table tests on the liquefaction resistance of sand with clayey fines. J. Geotech. Geoenviron. Eng., 2022, 148(2): 04021180

12.   Tu W.B., Gu X.G., Chen H.P., Fang T., Geng D.X.. Time domain nonlinear kinematic seismic response of composite caisson-piles foundation for bridge in deep water. Ocean Engineering, 235,109398

13.   Liang F.Y., Zhang Z.W., Wang C., Gu X.G., Lin Y.F., Yang W. Experimental study on stiffness degradation and liquefaction characteristics of marine sand in the east Nan-Ao area in Guangdong Province, China. Journal of Marine Science and Engineering, 2021, 9(6), 638, https://doi.org/10.3390/jmse9060638

14.   Yu K.Y., Gu X.G., Huang M.S., Ma X.F., Li N. Experimental, numerical and analytical studies on the attenuation of maglev train-induced vibrations with depth in layered soils. Soil Dynamics and Earthquake Engineering, 143, 106628, https://doi.org/10.1016/j.soildyn.2021.106628

15.   Bastola A., Gu X.G.,Zuo K.L. Numerical investigations on liquefaction potential of saturated silty sands. Soil Dynamics and Earthquake Engineering, 147, 106799, https://doi.org/10.1016/j.soildyn.2021.106799

16.   Gu X.G., Zuo K.L., Tessari A., Gao, G.Y. Effect of saturation on the characteristics of P-wave and S-wave propagation in nearly saturated soils using bender elements. Soil Dynamics and Earthquake Engineering, 145, 106742. https://doi.org/10.1016/j.soildyn.2021.106742

17.   Ma X. F., Cao M. Y., Gu X.Q.*, Zhang B. M., Yang Z. H., Guan P. F. Vibration-Isolation Performance of a Pile Barrier in an Area of Soft Soil in Shanghai. Shock and Vibrations, 2020, https://doi.org/10.1155/2020/8813476

18.   Wenbo Tu, Xiaoqiang Gu, Xianfeng Ma*, Dawei Huang. Analysis of lateral dynamic response of caisson foundation in layered clayey soils considering scour-hole dimensions. Shock and Vibrations, 2020, https://doi.org/10.1155/2020/8827498

19.   Gu X.Q., Zhang J.C., Huang X*. DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework. Computers and Geotechnics, 2020, 128, 103787

20.   Gu X.Q., Liang X.M., Shan Y., Huang X., Tessari A. Discrete element modeling of shear wave propagation using bender element in confined granular materials of different grain sizes. Computer and Geotechnics, 2020, 125,103672

21.   Tu W.B., Huang M.S., Gu X.Q., Chen H.P., Liu Z.H. (2020). Experimental and analytical investigations on nonlinear dynamic response of caisson-pile foundations under horizontal excitation. Ocean Engineering, 208, 107431. https://doi.org/10.1016/j.oceaneng.2020.107431

22.   Xu K., Gu X.Q.*, Hu C., Lu, L.T. Comparison of small strain shear modulus and Young's modulus of dry sand measured by resonant column and bender-extender element. Canadian Geotechnical Journal, 57(11), 1745-1753. https://doi.org/10.1139/cgj-2018-0823

23.   Tu W.B., Huang M.S.*, Gu X.Q., Chen H.P. Nonlinear dynamic behavior of laterally loaded composite caisson-piles foundation under scour conditions Marine Georesources and Geotechnology, DOI: 10.1080/1064119X.2020.1724217

24.   Dai B.B., Yang J., Liu F.T., Gu X.Q., Lin K.R. (2020). A new index to characterize the segregation of binary mixture, Powder Technology, Powder Technology 363,611–620.

25.   Liu, K., Chen, S.L., Gu, X.Q. (2019) Analytical and numerical analyses of tunnel excavation problem using an extended Drucker-Prager model. Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-019-01992-5

26.   Gu X.Q.*, Hu C., Zhang J.R., Xu K. Laboratory tests on the compaction and crushing behaviors of construction waste slag-clay mixtures. Journal of Materials in Civil Engineering, ASCE, 31(11): 04019256

27.   Qian, J.Q., Li S.Y., Gu, X.Q.*, Zhang, J.F. (2019). A unified model for estimating the permanent deformation of sand under a large number of cyclic loads. Ocean Engineering, 181, 293-302

28.   Huang M.S, Chen, Y.W., Gu, X.Q*. (2019). Discrete element modeling of soil-structure interface behavior under cyclic loading. Computer and Geotechnics, 107, 14-24

29.   Dai, B.B., Yang, J., Gu X.Q., Zhang Wei. (2019). A numerical analysis of the equivalent skeleton void ratio for silty sand. Geomechanics and Engineering, 17(1),19-30

30.   Qian, J.Q.*, Du, Z.B., Lu, X.L., Gu, X.Q., Huang, M.S. (2019). Effects of principal stress rotation on stress-strain behaviors of saturated clay under traffic-load-induced stress path. Soils and Foundations, 2019,59,41-55. DOI: 10.1016/j.sandf.2018.08.014

31.   Gu, X.Q., You, Z.P., Qian J.G.*, Li, Weiyi (2018). The deformation of granular materials under repeated traffic load by discrete element modelling. European Journal of Environmental and Civil Engineering, DOI: 10.1080/19648189.2018.1454860

32.   Qian, J.G., Lin H., Gu, X.Q.*(2018). Dynamic Shakedown limits for flexible pavement with cross-anisotropic materials. Road Materials & Pavement Design, DOI: 10.1080/14680629.2018.1491881

33.   Gu, X.Q.*, Yang, S.C. (2018). Why the OCR may reduce the small strain shear stiffness of granular materials? Acta Geotechnica, 13(6): 1467–1472

34.   Qian, J.G*., Zhou R.Y., Chen S.L., Gu, X.Q., Huang M.S. (2018). The Influence of Pavement Roughness on Dynamic Stresses in Saturated Subsoil Subjected to Moving Traffic Loading. International Journal of Geomechanics,18(4),04018012

35.   Huang M.S.*, Tu W.B., Gu X.Q. (2018).Time domain nonlinear lateral response of dynamically loaded composite caisson-piles foundations in layered cohesive soils, Soil Dynamics and Earthquake Engineering, 106: 113–130

36.   Gu, X.Q.*., Hu, J., Huang, M.S., Yang, J. (2018). Discrete element analysis on the K0 of granular soil and its relation to small strain shear stiffness. International Journal of Geomechanics,18(3): 06018003

37.   Gu, X.Q., Li, W.Y., Qian, J.G.*, Xu, K. (2018).Discrete element modelling of the influence of inherent anisotropy on the shear behaviour of granular soils. European Journal of Environmental and Civil Engineering, 22(sup1), 1-18. DOI: 10.1080/19648189.2017.1352030

38.   Qian, J.G., Gu, J.B., Gu, X.Q.*, Huang, M.S. (2017). Discrete numerical modeling of granular materials considering crushability. Journal of Mountain Science, 2017, 14(4), 758-770

39.   Gu, X.Q., Chen, Y.W., Huang, M.S.* (2017). Critical state shear behavior of the soil-structure interface determined by discrete element modeling. Particuology, 35, 68-77. DOI: 10.1016/j.partic.2017.02.002

40.   Gu, X.Q.*, Hu, J., Huang, M.S. (2017). Anisotropy of elasticity and fabric of granular soils. Granular Matter, 19(2), 33 DOI: 0.1007/s10035-017-0717-6

41.   Gu, X.Q., Lu, L.T., Qian, J.G.* (2017). Discrete element modeling of the effect of particle size distribution on the small strain stiffness of granular soils. Particuology, 32, pp. 21-29. DOI: 10.1016/j.partic.2016.08.002, 2016

42.   Gao, G.Y., Chen, J., Gu, X.Q.*, Song J., Li, S.Y., Li, N. (2017). Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading. Soil Dynamics and Earthquake Engineering, 93, 99-112

43.   Gu, X.Q., Yang, J.*, Huang, M.S., Gao, G.Y. (2015). Bender element tests in dry and saturated sand: signal interpretation and result comparison. Soils and Foundations, 55(5), 952-963

44.   Gu, X.Q.*, Hu, J., Huang, M.S. (2015). K0 of granular soils: a particulate approach. Granular Matter, 17(6),703-715

45.   Gao, G.Y., Li, N., Gu, X.Q.* (2015). Field experiment and numerical study on active vibration isolation by horizontal blocks in layered ground under vertical loading. Soil Dynamics and Earthquake Engineering, 69, 251-261

46.   Gu, X.Q., Huang, M.S.*, Qian, J.G. (2014). DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter, 16(1), 91-106. 21

47.   Gu, X.Q., Huang, M.S.*, Qian, J.G. (2014). Discrete element modeling of shear band in granular materials. Theoretical and Applied Fracture Mechanics, 72, 37-49

48.   Yang, J.*, Gu. X.Q. (2013). Shear stiffness of granular material at small strain: does it depend on grain size? Geotechnique, 63(2), 165-179

49.   Gu, X.Q., Yang, J., Huang, M.S. (2013). Laboratory measurements of small strain properties of dry sands by bender element. Soils and Foundations, 53(5), 735-745

50.   Gu, X.Q., Yang, J.* (2013). A discrete element analysis of elastic properties of granular materials. Granular Matter, 15(2), 139-147

51.   Gu, X.Q.*, Yang, J., Huang, M.S. (2013). DEM simulations of the small strain stiffness of granular soils: effect of stress ratio. Granular Matter, 15(3), 287-298

52.   Gu, X.Q.*, Yang, J. Huang, M.S. (2013). Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity. Journal of Central South University, 20(7), 2001-2007

53.   Qian, J.G.*, You, Z.P., Huang, M.S., Gu, X.Q.(2013). A micromechanics-based model for estimating localized failure with effects of fabric anisotropy. Computers and Geotechnics, 50, 90-100

54.   Song, Y., Gu, X.Q., Hu, J. DEM-FDM coupling simulation of cone penetration tests in a virtual calibration chamber. Cone Penetration Testing 2022. CRC Press, 2022: 703-707.

55.   左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究. 岩土工程学报. http://kns.cnki.net/kcms/detail/32.1124.TU.20220719.1641.002.html

56.   顾晓强, 余宽原, 黄茂松, 刘鑫, 闫芳, 吴德顺. 无源环境振动的有限元分析方法及在北京光源工程应用. 岩土工程学报, 2022, 44(12), 2245-2253

57.   袁聚云, 陈玺元, 顾晓强,林毅峰,校建东,吴彩虹. 广东阳江海洋砂性土HSS模型参数的试验研究, 同济大学学报(自然科学版),2022, 50(6), 842-860

58.   顾晓强,梁玉珍, 周奇辉,刘尊景,荆子菁. 白鹤滩水电站移民区高填方工程砾石填料特性研究, 同济大学学报, ,2022, 50(4), 528-536

59.   顾晓强, 刘文倩, 陈玺元, 林毅峰, 校建东. 广东阳江地区海洋软土HSS模型参数的试验研究. 岩土工程学报, 2021, 43(S2), 41-44

60.   汪海林, 刘航宇, 顾晓强,宋许根. 基于多元概率分布模型的珠海黏土多参数预测. 岩土工程学报, 2021, 43(S2), 193-196

61.   吴瑞拓, 顾晓强, 高广运等. 基于HSS模型的上海地铁深基坑开挖变形分析. 建筑科学与工程学报, 2021, 38(6), 1-7

62.   刘磊,倪雨萍、黄茂松、时振昊、顾晓强. 基于小应变非线性弹性模型的基坑开挖三维数值模拟. 建筑科学, 2020,36(增),191-197

63.   顾晓强, 吴瑞拓,梁发云, 高广运. 上海土体小应变硬化模型整套参数取值方法及工程验证, 岩土力学,2021, 42(3), 833-845

64.   余宽原,顾晓强,黄茂松,马险峰,李宁. 磁悬浮列车运行引起的环境微振动实测分析, 岩土工程学报, 2020, 42(S1), 146-150

65.   黄茂松, 边学成, 陈育民, 王睿, 顾晓强, & 周燕国. (2020). 土动力学与岩土地震工程. 土木工程学报, 53(8), 64-86

66.   陈尚荣, 李通达, 梁发云, 顾晓强. 上海临港砂质粉土硬化土小应变模型参数研究. 同济大学学报,2020, 48(6), 841-846

67.   汪国章,顾晓强. 砂土静力触探试验的三维离散元模拟研究. 建筑科学, 2019,35(增),237-242

68.   陈少杰, 顾晓强, 高广运.土体小应变剪切模量的现场和室内试验及其工程应用.岩土工程学报,2019,41(S2),133-136

69.   顾晓强, 杨朔成. 基于离散元数值方法的砂土小应变弹性特性探讨. 岩土力学, 2019, 40(2), 785-791

70.   顾晓强, 陆路通, 李雄威. 居尚威.土体小应变刚度特性的试验研究. 同济大学学报,2017, 46(3), 312-317

71.   刘麟, 顾晓强, 黄茂松. (2017). 利用带弯曲元应力路径三轴仪量测静止土压力系数研究. 岩土工程学报,39(s2):212-215

72.   顾晓强, 杨峻, 黄茂松, 高广运. 砂土剪切模量测定的弯曲元、共振柱和循环扭剪试验. 岩土工程学报, 2016, 38(4), 740-746

73.   高广运, 李绍毅, 顾晓强. 列车运行引起高架桥群桩基础地面振动分析. 岩土工程学报, 2015, 37(10), 1751-1761

74.   顾晓强, 杨峻, 黄茂松, 高广运. 干砂弹性参数测定的弯曲-伸展元试验. 岩土力学, 2015, 36(s1), 220-224

75.   胡靖, 顾晓强, 黄茂松. 基于离散元法的静止土压力系数分析. 岩土力学,2015, 36(s1), 624-628